) - PR
- NASA-CR-191404 Lo gD 72

- CopP AT
T _ WAg 6 /23
I G-I

/36/89 54

EVOLUTION OF ADA TECHNOLOGY IN A PROOUCTION SOFTHARE EKVIRONMENT

I.lnda Esker Kelvin Quimby

Computer Sclences Corporation Computer Sciences Corporation
System Sciences Division Systea Sciences Division
10110 Aerospace Rd. 10110 Aerospace Rd.
tanham-Seabrook, Md. 20706 Lanham-Seabrook, Md. 20706

Frank McGarry

Natfonal Aeronsutics and Space
. Administration
Goddard Space Flight Center
Greenbelt, Md. 20771

INTROOUCTION In studying the sertes of Ada projects, the -

oal/question/metric (GQM) paradigm [3] was fol-

The Ada programxing language and the assoctated oved. The goal of the study was to determine the

'ORIGINAL PAGE IS
OF POOR QUALITY

softvare engineering disciplines have been de-
scribed as one of the most oéignfﬂcmt develop-
ments 1n software technol in many years.
Although many claims have been.made about its ad-
vantages and fmpacts, there have beea velzd‘feu
empirical studies that clarify the impact of . -

The Software Englneering Laborat:
organization sponsored by the National Aeronautics
and Space Adainistration (NASA) consisting of
three principal members: WASA/Goddard Space
Flight Center, the Ualversity of Maryland, and
Coaputer Sciences Corporation. The SEL was
founded 1n 1976 to carry out studies and measure-
meats related to evolving softwvare technologies
(7). The studies are almed at understanding both
the software development process and the {mpacts
that evolving softwvare practices may have on the
softvare process and product. Slace 1976, the SEL
has conducted over 65 experiments by applying se-
Tected technlques to specific development efforts
and measuring the resulting process and product.

In early 1985, the SEL {aitfated an effort to
study the characteristics, ::pﬂatlous. ad 1e-
pacts of Ada. BSegimning vith a relatively small
gnctice problea (6000 source limes of Ada),
€L has collected detalled development data from 2

total of eight Ada prajects (some of which are -

still ongoing). The ects range in size from
- 6000 1ines t? mmi-:tr:ljy 160,000 1{nes of code.

PROJECT BACKGROUKD

Qevelopment Environsent .

All Ada projects studled were developed in a
DEC environment, using either & VAX 11/780 or a
VAX.8600. Both machines are shared with other
genaral users, and the support was averige Com-
pared. to other typical projects- developed 4n
gk‘l‘m. As vill be poin out later, varylng
degrees of use were made of the avatlable tools
and methodologies. . - -3

(SEL) 13 an . for this study.

{opact of Ada on productivity, veliability, reuse,
and general product characteristics. A second
{nterest vas to study the use of Ada features
(such as generics and strong typing) over time.

Profect History

Information on six Ada projects was™ analyzed
The projects wers developed over
4 span of 4-1/2 years sm't‘l:g {a late 1984 and
ending with two prajects that will be completed 1n
1989.. The stud{ categorized the six projects {nto
three groups distinguished solely by approximate
start date: the first two are called the first
Aa projects, the mext two are the second Ada
p:iects. and the most recent are the third Ada
projects. The timelfae for the six projects {is

. showa {a Flgure 1.

The first experfences with Ada 1n the SEL oc-

curred with two projects that were {aitiated {n

Yate 1984 and early 1985. A team of seven pro-
gramers: vas formed {n late 1984 and beq‘a;‘ =
sive tralaing %n ODecember of 196S. first
target ‘mjoct was a simglator that vas vequired
to model an attitude control system of a particu-
Jar WASA satellite, the Guama Ray Observatory
Comparable simulators had beea developed
{n the past by KASA, and this partlculum:mj-
ect (GROOY) was devel fn parallel to the iden-
tial ect befag loped 1a FORTRAN. The
rvesylts that cular comparison are <ocCu-
mented by Agrest! et al. (1] and “HcGarry and
Nelson (14). It wvas estismated that -the d«elo:;
sent of GRODY would probably ﬂ?iﬂ-ftu 10

12 staff-years of effort, coasidering previous -
experiences vith statlar FORTRAN projects. .

The GRODY team had an average of aearly § years

“of um-lmc with softvare development: however, -
faone any

previous Ad: experience.
there had been a0 earlier Ada experfence
fa this environmeat, 0 0 lessons 1

In fact,

and %0

.Ada experts wers available to tesm members. The

teim vas experienced with €light
al 1t vas, oa the average,
than the typlcal development
rooment. .

To prepare for the design and development of
GROOY, the team underwent s of _rg_x_teg\;j!e

cs problams
ess experienced
ia this eavi-

e g

(NASA-CR-191404)
TFCHNOLNGY TN A PRODUCTION SOFTWARE
ENVIRNNMENT

EVOLUTION OF Ada

{NASA) 9 p

Unclas

N$3-70959

EUVEDS
135 KSLOC
- EUVETELS
. 75 KSLOC
UARSTELS .
SRD ADA
FDAS PROJECTS
67 KSLOC
~GOESIM
| O7TKOLOC 1\ oNDADA
. - - GOADA PROJECTS
162 KSLOGC
GRODY .
:\\\\\\\\\\ \\\a&\\\\\\\\\\\k\\' . P:% g ég?s _
) ‘ﬁ%\i&w&@& EIRARA N = - §
6Ksl L L | 1 1
1/85 1/86 187 1788 1/89 190
Figure 1. Ada Projects in the Flight Oynamics Division of NASA/Goddard
training, which covered Ada syntax as well as GOESIN .vas a telemetry simulator that would be

principles of softwvare engineering and detailed-
design techniques [16]. The traiaing included the
. following:

e Alsys video tapes with discussion

e Lectures on Ada from University of
Haryland staff ’

o Lectures and workshops on PAMELA. (8], .
object-oriented design, and other de-
sign techniques

o HWorkshops based on Booch's tralalng:
materials (5)

e Lectures on softvare engineering prin-
_ciples, {acluding abstraction fn-.
formation hiding . -

During the 6 months of traiaing, the electronic
mfil system (ENS) Ada .project was dcnlcred. This
n:‘ the first Ada effort completed by this organi-
u “.
detatled statistics were kept o
m:nt process and prod could be analyzed.

completed, EMS consisted of approximately
6000 1ines of Ada code. -

These first Ada projects,

wvare development environmeat. The EMS ect ms
ietton, Svten (ACD): e CRY prodect was
pilation :

veloped-on the VAX 8600, also using the DEC ACS.

The two projects classified as the second
pro*ccts both began in early 1987 and were
sedion size with complexity typical of other.
forts ia this environment. B8oth projects
simulators - required to support the GOES wissi
GOADA was a dymamics simslator similar -to

¥

2af

251

1t vas set up as 3 tralal lem, but -
o &'ﬁt’m devel-

GROOY and EMS, were
developed by the same personnel in a similar soft-.

used {n testing the attitude ground support soft-
ware. :

The GOADA team consisted of approximately seven
people, some of whom were not assigned fu 1 time
to this project. Of these seven, three had pre-
vious Ada experience and two had experience ia the
application area. The GOESIM team coasisted of
four people, one of vhom had previous Ada experi-
euceudmdaohadex_peﬂmeuitﬁﬂdstypoof
The tra‘lni:g consisted of lectures

de-

veloped: lectures and classes in Ada s and

epts were also held. The tralalang lasted
approximately 4 veeks for eich teanm. .

Both of these second Ada projects wsed the OEC
ACS to complete developmeat. Because there had
been grevious Ada experience from the first Ada
prodocts&::pmmu Ada

oad projects. The other
much difference type of system, & source cod
ager used for mnipulating €light dynamics soft-

tean consisted four no?h. none of vhom
previous Ada experieacs.
toock the form of Vectures and workshop

the Ada style guide; additional training from per-
sonnel with previous Ada experience was also pro-
vided. All team meambers attended classes on Ada
- syantax and Ada development.

The teams supporting the third Ada projects had
more personnel available to them who had previous
Ada experience, and they also had available sev-
- aral lessons-learned reports that had been devel-
oped by the earlier Ada projects. These two
proijlects spanned approximately 15 to 18 months
- each,

Data Collection

Detatled data for this study were collected for
the six projects. As for all software developed
ia the flight dynamics environment, the data are
collected from the following sources:

o Data collection forms
e Tools and accounting records :
o Interviews and subjective {aformation

The most extensive and detailed data were provided
on a series of data collection forms completed by
¥°1ﬂ1‘ o::\e developers and managers and including the
) ng:

e Effort data (hours spent "weekly 5’
activity) .

¢ Error data (for all changes and errors) ’

o Project estimation (managers® estimate
of final stze, cost, schedules) '

e Product orig‘lnat‘loi\ (characteristics
of modules as they are designed)

These data were t'hc sajor- source of 1aforl'ntlon
used {n the comparisons.

. The "tools used to record {aformation faclude

the automated accounting system (for records of
computer time used, source code changes, and
source code stize higtory): coafiguration control
tools (Configuration Hanagement System (OMS), used
to record changes to souyrce code); and "ASAP, the
Ada Static Source Code Amalyzer (9], which calcu-
Tates detailed counts and characteristics of Ade
source code. Information was also provided
through {atervievs with team developers and san-
agers (to record lessons learned general im-
ressions) and through subjective assestments made
y sealor softvare engineers (om topics such as
methodologies l"lied). All this taformation s
consistently collected, quality assured, and ve-
corded on a data base where it 1is wused as the
basis for study or analysis. :

EVOLVING CHARACTERISTICS OF THE SOFTHARE

The first Ada ect did mot. automticall
assume the reuse of standard FORTRAN pro]
wmethodologies and products. Ourlng the predesign
phase, the project declded on the prodycts, ve-
vievs, and methodology to be wsed. Project per-
sonnel declded to conform to the traditiomal
design ‘reviev process that had been .used {a the
flight dymamics environmeat for many years. [2,

15]. However, project members {mvestigated sev-

~ object-oriented design [17].

_ eral design methodologlies and eventually applied a

modified version of object-oriented design {1, 12,
191.)

Use of an object-oriented design rvequired a
rethinking of the design, 1ts documentation, and
{ts presentation. This caused some inconsisten-
cles with the traditional approach used {in the
SEL. Project membars were required to develop new
design products because the existing design docu-
smeatation methods for structured and functionally
orfented software design did aot apply to the
To develop a design
notation used 1n the design documentation, they
cocbined concepts from George Cherry's process
abstraction method, PAMELA (8], and Grady h's
object-oriented design [S). Design mrus were
presented at the preliminary desiga ew (PDR),
and top-level package specifications were devel-
oped for the critical design reviev (COR). These
components were then expanded and compiled during
Build O of the {mplementation phase. -

The second and_third Ada projects adopted and
butlt on the fame methodology and design nota-
tion. They also conducted design reviews, but the
specific products generated at each stage were
somewhat modified from the first Ada efforts. For
these later projects, package.specifications were
developed for the POR, and package bodies and sub-
unit program design -language (POL) were developed
for the CDR. 1Ia addition, the components were
compiled before the COR. These efforts polnted

- oyt the need to redefine the specific products

roduced at key milestones of the design process:
ver, the characteristics of the products have
yet to be declded. Quimby and Esker {17] present
a3 more detatled analysis of the evolving charac-
teristics of both the design process and the prod-
ucts developed. .

Software Size .
_Traditionally, softwvare size has been described
fa terms of the lines of code developed for the

systen.- Lines of code can, however, be expressed
by sany measurements {111, {acluding the following:

e Totil phystcal liaes of code Ccarrfage
returns)

e m@umtm phystcal lines of
e . - . -

o " Executable lnes of coda C(ELOC) (wot
" incloding declarations) - .

e Statemeats (semicolons fa Ada, which
{nclude declarations)

Table 1 deicribes the sfze.of the Ada projects fn

. the flight dynamics environment using these four
seasyrements. For comparison to the ?mj«:ts.
typical FORTRAN applications

ects of sluilar
.are also su-m'lzgdﬂ.o1

Ualess only Ada statemests are counted, these
figures {ndicate that usiag Ada results fa many
more lines of code using . The in-
crease ta'llnes of code 1s not aecestarily & ug:
tive result; rather, 1t means that the size of
system hg!eneated %n Ma vill be larger than an
equivalent ‘system 1n FORTRAN. It 1s also clear

Table 1. Software Glgracteri stics of Projects
. STADA 2ND ADA 3RD ADA FORTRAN
APPUCATION P:!OJECTS PROJECTS PROJECTS PROJECTS
DYN SiM OYNSM TMSIM CONFIG TMSIM | DYNSIM TM SIM
TOTAL UNES 128,000 162,200 87.500 67,700 75,000 45,500 28,000
(CARRIAGE RETURNS)
NONCOMMENT/ 60,000 79.900 42300 ' 86,000 41,400 26,000 15,000
NONBLANK : :
EXECUTABLE LINES 40250 49,000 25,500 19,700 22150 22500 12500
(NO DECLARATIONS))
STATEMENTS 2500 29,200 - 16300 12,700 15,200 22300 - 12000
(SEMICOLON ~ INCLUDES .
OECLARATIONS)

Table 2. Effort Distribution (Perceat of Total Effqrt) oudng €ach_—
{fe-Cycle Phase of Ada and FORTRAN Projects

. PHASE 1STADA | SNDADA SRDADA FORTRAN
PROECTS PROJECTS PROJECTS PROJECTS

REQUIREMENTS 8 43 67 125

ANALYSIS :

DESIGN 24 305 %0 25

CODE : "] . 520 . 440 850

TEST , 2% 182 133 0 .

that a precise definition 1s needed of vhat con-

stitutes a line of code fn Ada and vhat types of T the

code are included fn that measurement. .
factors contribute to the facreased tiu

of "&?m projects. The style of Ada results u-)
code becau

s¢ 1§t encourages formitt!
blank lfines, and lotmr. readable mases for data
elements and subunits. stmg typing withia
AdL also produces more code thaa fa FOR be-
cause each data element must be explicitly de-
clared.. In addition, the local st{lc guide places
further requiremsents oa tlu
1 Awong other requi e guide
s p«lates that each camux muu«t -us be on a
separate fcal line. A1l these features have
{acreased code size, but the increased s‘lu
2150 provides advancements ia the areas of capa-
Mllty. readability, and understanding. .

Effort Distribution by Phase Dates
Effort distributions can ln described by the

effort expended durt e le phases
of & project and by ‘t'gu Wm ia soft-
wvare developmeat tctivitus. Usiag the first

effort distribution by ¢ dates,
FORTRAN er-cyclc ef ort distribution

fptea
a
{15] {n the ﬁigﬁ dynuics eavironment shows

for readabil- -

12.§ perceat of the total effort e
or requirements
22.5 percent durhg the design pmse.
during the code {mplemeatation

cent during the system test phase (Table 2).

~ From the reviev of lMterature on Ada (18], 1t

ed design

qu:;: lanned by
FORTRAN projects, any

predesign

et

5388Q(23)-8

8386G(23)-5

ed during
s phase,

Nﬂt

the effort distributions mld

- 'vas expected that
M significaatly differeat for the Ada
‘dﬂc to the -odiﬂod design and ‘lwleleamh

had been antict
miech mld vequire sore effort during

test phues.

snagers

iaﬂuacod by the PORM 1ife cycle.

quiddy
show A.S‘I
a FORTRAN

Mﬂd

praject.

show more design time requt

test tue. .

The 14ife
ud third Ada projects are .$

and less effort dcrl
t 13210:1“ ot d:we“ as to

roomeat, s can $

ve aot been observed. The Ada

erienced

perhaps thelr plans were

changes are oot occurring

T

dc-

E‘-)
it

1ife cycle 18 3

ted, the Adr
AU G i e By
' (] ¢ ¢
oy les for the uoond
ft::g mqhtly _ .

tess system

The effort distribuﬂons of the Ada

ORIGINAL PAGE IS
OF POOR QUALITY

ble 3. Effort Distribution (Percent of Total Effort) for Devel-
Table opment Activities Across All Life-Cycle Phases of Ada
and FORTRAN Projects
PHASE 1STADA 2ND ADA 3RDADA FORTRAN
T PROJECTS - PROJECTS PROJECTS PROJECTS
 REQUIREMENTS 82 a7 65 6.0
ANALYSIS :
357
DESIGN - 365 275 240
™~
CODE @7 520 445 450 g
TEST 176 168 133 250 g

projects are showing that the FORTRAN 1ife cle
cannot be automatically assumed for Ada:

These observations probably {ndicate that the
Tife-cycle definition 1s not easily changed merely
bﬁ:&:u a differeat language or techaique 1s ap-
plied.

process.

Effort Distribution by Activity

The second approach to effort distributions s
to analyze the effort by activity. In addition to
collecting the effort expended between key phase
dates (e.g., between the COR and the start of sys-
tem test), the SEL also collects detalled effort
- data lndependent of phase dates. Effort by phase
is time drivea and assumes, for exwlc. that all
design activities are complete and cease at- the
end of the design phase. In reality, many tctivi-
ties take place during each Iife-cycle phase and

therefore, the effort distribution by activity an’
be quite different from the distribution by phases.

the case for the first Ada -

m:' ‘nﬁetgough 1 24 t of the total
projects. only percent o
effort was allocated the design phase,

36.5 percent of the total roject effort vas speat -
The extra
sctivities s wore -

on design activities (l’ablu 2 and 3).
effort aeeded for Ada design

appuont 1ia the distribution of effort by actlvity
than in the distribution by phase dates. -

trend seea above. the ects, more ef-
fort vas required for design and less effort for
softwvare testing than on the FORTRAN projects.

Use of Ada Features

In an effort to achieve some measurement of the.

uu of tho featyres available {n the Ada language,
’ SEL {dentified six AMa fertures to monttors.
uurlc packages, declarations, - .
guks compilable PDL. and exception
ncs&mﬂcuﬂmmmus«mﬂuc
or how much these features were used.

to what degree features of Ada were used by the

Ada project and, second, to determine whether the -

use of A -features ‘uttmd as an eavi
gained experience with the language.
use of these Ada features were obtained using the

ronmeat

The evolution tovard the expected charac-
teristics of the aew techoology is a slow, qndual'

“were designed with oné
- ture.

~‘cations within package bodies vu used to coatrol
. package visihﬂity.

The ef-'
fort by developasent o:ctiﬂtmqtia relaforces the

The pur=- -
poses of this analysis. were, first, to determine-

Oata on the -

‘Ada Static Source Code Analyzer Program '['9].

Analysis of the use of compilable POL and exce
tion -handling did not show trends. Perhaps
4s too early fo seea results Tn these areas; bov-
ever, trends were observed in the wse of the other
features.

The average size of packages (ia source lines
of code (SLOC)) for the first Ada projects s much
larger thw the average size of ges for the
second and third Ada projects (Figure 2). This
fncrease 15 due to a difference in the structuring
method between the first Ada projects and all sub-
.sequent Ada projects [17]1. The first Ada projects
ckage at the root of each
subsysteu. vhich led havﬂy nested struc-
-In addition, nesﬂng of package specifi-

::;ojects are
using view of subsystels cribed by
Grady’ Boodt (6, Ch. 17] as an abstract design en-
tity vhose interface 1s defined by a .nusber of
separately coapilable packages, and the oaly
::sted Ada packages are generic package iustmtu-

ons.

The generi trgaduce is a major tool 1a the Ma
language con u' 30
Reports have shown benefits of Ada reusad e
softwvare-{18] and, 1a the flight dymaics eaviron-
ment, use of generic packages bhas been {ncreasing
from’ the first to the curmt Ma projects. Hore
than one-third of the pa $ o curreat ects
are generic packages. Al sore analysis (s
uuded. this higher use of generics possibly re-

flects both a stronger emphasis on the-development
of verbatim reusable components and an {ncreised
understanding of how to wse gmrlc Ads ptckages
cffect‘lvely a the flight dynuics ronaent.

The use of s typhglamusoft\n tys-
tems wvas measured the eumber of detlara-
tloas per thousand I! of code. though
measyre {tself 1s mot {atultively umnful 1t

provides a mathod of observiag trends 1a lu
of Ada type declarations. In the flight dymal
envimmn“ t. .the amount of typlag s tnmulag
over time.

his my umcttc t!at m devel
gre becoming more comfortable wi °§p-
fng features of Ads and are uiag lts e
to a fuller extent.

GENERICS

GENERIC PACK
O
TOTAL PACK

$RD ADA
PROJECTS

18T ADA 2ND ADA
PROJECTS PROJECTS

. STRONG TYPING

129

ToTALTYEES

18T ADA 2ND ADA SRD ADA
PROJECTS PROJECTS PROECTS
. TASKING

TOTAL
TASKS

1STADA
PROJECTS

2ND ADA
PROJECTS

Figure 2. Use of Ada Features

£11GhE dommaics qnviroanent for the dynaalcs stau

cs ot EAL
lators. Elght tasks were used for GROOY, the
first cs slmulator i M. f
dynamics simulators of approximately the same size
and functionality as GROOY, design personnel de-
termined that four tasks were sufficient to tmple--
ment the {interactive capability of the system. "It

1s expected that future dymamics simulators will

continue to wse tasking, hovever developers are

nov using tasking more judiclously. The third Ada

projects are telemetry simslators, which .are se-

quential systems that do mot benefit from the fea-

:u‘r'euof the language, and thui do odt use Ada-
$KS. . . T

COST/RELIABILITY/REUSE
.

Ofscussions on Ada productivity re carefyl
{aterpretation because so many defimnitioas exist
for softvare size measures {a Ada. Oépending on
the measurement used, softwvare developers using
Ada can be shown to be either as productive as or
not as productive as softwvare developers using
FORTRAN. Using the total lines of delivered code
a5 3 seasyre, the Ada projects studied show an
{sproving :ymducﬂvity over time, and they shov a

roductivi greater than FORTRAN (Figure 3).
aowev, er, considering only code statesents (semi-
colons for Ada or excluding all comments and con-
tinued 1ines of code fa FORTRAN), the results are.
differeat. An fncreasing productivity trend re-

For subsequent °

L} . -

tion.*

maing in the Ada projects over time, but the Ada
iu'odects, hive m{et achieved the productivity

evel of FORTRAN projects. .

" In the flight dynamics environment, sany soft-
ware .components are veused on FORTRAN projects.
Because no Ada components existed previously, the
first Ada projects were, 1a fact, developing a
g:ater percentage of their delivered code than

1cal FORTRAN project. A past study by the
SEL and. experience with FORTRAN projects {ndicated
that reuysed code costs approximately 20 perceat of
the cost af sew code (2]. Using this estimate,

- reusability can be factored lato softwvare s‘lu&y

estimating . the amount of developed code.

veloped code 1s calculated as the amount of new
code plus- 20 perceat of the veused code. Hith
softvare reusability factored ia, the productivity
for developed statements on Ada projects s ap-
proximtely the same as that for prajects
(Flgure 4). . -

' uuaobjoctim are often made vhen ing
-productivity 1a terms of ilnes of code: 1t (s
- 8ffected by -style, there are many to code the

sine on, etc. The myst {atuitive measure to
use 1n computing productivity 1s cost per “func-
fo compire the TorctionItey of molecis beioy

ona ag
compared “(e.g., GRODY versus GROSS), and data seem
to {ndicate t comparing “statesents® {s the
closest measure to compariag functionality.

The trends 1n Ada productivity are very posi-
tive {a that _tlu overall cost of producing an Ada

(TOTAL LINES)
80
] (=1
unes &7
_PER ;
STAFF- 40.
DAY
204
FORTRAN 1STADA 2NOADA 3RDADA
PROJECTS PROJECTS PROJECTS PROJKECTS
DEVELOPED LINES (NEW « 20% OLD)
s 468 a8
40
STAFF- |
DAY 1
10-
04

PAOJECTS PROJECTS PROJECTS PROJECTS

Figure 4. Ada Cost/Productivity of Oeveloped Code

system has quickly become equivalent to -that of
producing & FORTRAN system. The flight cs
FORTRAN environment 15 stable, mature, butlt
Rlthough the First Adn peofeet ey ertence.
e firs [percen
more staff-hours to cowlcto"gu a “stailar
project, this overhead 1ncluded effort to
develop aew practices and processes and to Tearn a
nev environmeat. Hith experience, the environment
is becoming more stable and productivity 1s n-
creasing. ’

Belfabitity

As with productivity, the many ways of aeasur-
lag softvare size affect the results of relfabfl-
ity studles. For example, will the error rate
normalized by the total system size or by the ava-
ber of language statesents give the most accurate
rmlin%oof the relfability of Ada softvare com-
. pared FORTRAN? In the flight dynamics enviroa-
ment, changes to -the software made after unit
testing when the software s placed under con-
figuration control are formally reported on change
veport forms.. The developer must supply the rea-
son for the change (e.g., error, requirement
change) and, {f the change is due to an error, the
source and type of error. ’

-vate as as, {f

(STATEMENTS)

FORTRAN
PROJECTS PROJECTS PROJECTS PROJECTS

Figure 3. Ada Cost/Productivity of Delivered Code , .

1STADA 2NDADA SROADA

(DEVELOPED STATEMENTS)

103

FORTRAN (STADA PNDADA SRDADA
PROJECTS PROJECTS PROJECTS PROJECTS

In a very smature FORTRAN development environ-
ment, the ZROSS project reported 3.4 errors per
thousand 1ines of source code (KSLOC) i the sys-
ten. As Table 4 shows, all the Ada projects
achieved an error rate lower than the rate on the
FORTRAN project. Ia addition, the error rate on
gn A\da-pmject: shows & decreasing trend over
", !

Khea thée error rate {s mormalized by the number
of language statements, the first and second Ada
projects shov a slightly higher error rate than
the FORTRAN project. However, the error rate
:gdn shows a decreasing trend over time. On the

1rd Ada projects, the errors have decreased to a
aot better than, the error
rate on the FORTRAN project. It s still too
early to observe a defiaite difference from the

rates; hovevar, the reliability of the Ads
%ects appears at least as good as that of
projects and is fmproving with each Ada
project. -
Classes of Frrors -

Errors reported are classiffed accordiag to

source and type of error. Sources of errors can

be requirements, functional specifications, de- .
sign, code, or previous changes. Types of errors

. design. errors, a- substantial f{ncredse.

Table 4. Ada and Error/Change Rate

1ST ADA 2ND ADA 3RD ADA FORTRAN
PROJECTS PROJECTS'* PROJECTS " | PROJECTS
ERRORS/KSLOC * 1.8 1.7 14 | 10 1.0 34
ERRORS/K STMTS 102 | o4 75 53 56 69 é‘
g .

* &OC-TOTALLNES(INQUOES@MMENTSIREUSBJ}

** FIGURES BASED ON ESTIMATES

are {inftlalization, logiclcontrol'structure. {a-
ternal {nterface, external {aterface, data value
or structure, and computational.

~ On a typical FORTRAN project fn the flight dy-
amics environment, design errors amouat to only
3 percent of the total errors on the project (Fig-
ure 5). For the first and second Ada projects, 25
to 35 percent of all errors were clusi'i:'ied tzs
or the
third Ada project, however, design errors dropped
significantly and are estimited to be approxi-
mately 7 percent. This rate is close to that ex-
perienced on FORTRAN projects and clearly shows a
maturation process with growing expertise fa Ada. ..

The literature on Ada reports that the use of
Ada should help reduce the number of {nterface
errors in the software (4]. Although the compiler
will catch most calling parameter consistency
errors, {interface errors can also {nclude errors
that will not be detected watil vun time. Typt-
cally, these are errors fa string pirameters or
subtypes with different constrafats and errors in
calling parameters due to the need for additional
or different types of parameters. Using guide-
lines and examples in the data collection document
(131, the errors are classified by the developer
reporting and correcting the error.

In the flight dynamics FORTRAN eavironment,
about one-third of all errors on a praject are
interface errors. On the first and second Ada

. projects, ﬁlc‘rﬁiﬁtl ¢ of {aterface errors was

aot greatly reduced (Figure §), with approxisately

- are decreasing.

. more than 35 percent reused code.

one-fourth of the errors belng {nterface errors.
Hith curvent projects, however, the SEL 1s. now
observing a significant change: {nterface errors

In the SEL,_*errors due to a previous change"
categorizes efrors caused by a previous modifici-
tion to the software. The first Ada projects
shoved a large jump in the percentage of - these

-errors compared to profects using FORTRAN (Fig-

ure 5). However, all subsequent Ada projects show
a rate for these errors that {s ver{ similar to
the FORTRAN rate. This fnitfal jusp 1n .the ervor
rate can rrobabl be attributed to {nexperience
with Ada, fnexperience with Ada design methodolo-
gies, and a mested softwvare architecture that made
the software much more complex. Agala, the -error
profile is evolviag vith the maturity of the Ada
eavironment.

-Software Reyse

- Throughout the years of developlag simtlar sys-
4ens 1a FORTRAX lya“the flight dynamics environ-
ment, the average level of software reuse has been
between 1S and 20 percent (10, 20]. FORTRAN proj-
ects that attained a software reuse rate of
35 percent or higher are rare. After the first
Ada projects and with only § to 6 years of matur-
uég fa the environment, Ada projects bave now
achieved 2 saftvare reuse rate of over 2§ perceat,
already ter than the typical FORTRAN projtecta
The project -is expected to consist of

' This tread of
{ncreasing softvare reuse {s very proaising.

FORTRAN 1STADA SNDADA SROADA
PROJECTS PROECTS PROJECTS PROJECTS

FORTRAN ¢STADA SMOADA RO ADA
FAQIECTS PROJECTS PAOCIECTS

. DESIGN ERRORS INTERFACE ERRORS . mmmmme
“ . . o .
. -
204 i
%
04 7
s
0.

| Figure S. Error Characteristics

CONCLUSIONS /OBSERVATIONS /COMPARISONS

Hany aspects of software development with Ada
have evolved as our Ada development enviror_unent
has matured and our personnel have become "more
experienced in the use of Ada. The SEL has seen
differences in the areas of cost, reliability,
reuse, size, and use of Ada features.)

A first-time Ada project can be expected to
cost about 30 percent wmore than an equivalent
FORTRAN project. However, the SEL has observed

significant improvemeats over time as a develop-.

ment environmeat progresses to second and third
uses of Ada.

The reliability of Ada projects 1s initfally
simflar to that expected in a mature FORTRAN en-
vironment. Hith time, however, {improvements can
be expected as experience with the language in-
creases.

Reuse {s one of the most promising aspects of
Ada. The proportion of reusable Ada software on
our Ada projects exceeds the proportion of reus-
able FORTRAN software on our FORTRAN projects.
This rvesult was noted fairly early in our Ada
projects, and our experience shows an {increasing
trend over time.

The size of an Ada system will be larger than a
similar system in FORTRAN when considering SLOC.

Size measurements can be amisleading because dif- .

ferent wmeasurements reveal differeat results.
Ratlos of Ada to FORTRAN range from 3 to 1 for
total physical lines to 1 to 1 for statements.

The use of Ada features definitely evolves with
experience. As wore experience is galned, some
Ada featurgs may be found to be inappropriate for
specific applications. However, the lessons
learned on an earlier project play an favaluable
part fn the success of later projects.

REFERENCES

1. restl, H., et al. Designing vith Ada fo;'
satellite sfmulation: A case study. Proceedings
the NASA Space Station, June 1986.

2. Agresti, W., McGarry, F., et al. Hanager‘s
. Softvare Engi-
neering Laboratory, SEL-84-001, April 1984, .

3. Bastii, V. Quantitative Evaluation of Soft-
. . Unlversity of Haryland, Tech-
nical Report TR-1519, 198S. .

4. Basiif, V.. et al. Uise of Ada for FAA's Ad-

g . The NHITRE Cor-
poration, April 1987,

§. Booch, G. Software fEngineering Hith Ada.
Henlo Park, CA: 8enjamin/Cummings Publishing Com-
pany, 1983.

6. Booch, G.

A . Henlo Pa_r;,

CA: 8enjamin/Cumaings Publishing Company, 1987.

7. Card, D., HcGarry, F., Page, G., et al. The
. Software Engi-

neering Laboratory, SEL-81-104, February 1982.

8. Cherry, G. Advanced Software Engineering Hith

. fanguage Automation Assoclates,

Applications
Reston, VA, 1985.
9. Doubleday, D. ASAP: An- Ada Static Source
Code Analyzer Program. University- of Haryland,
Department of Computer Science, Technical Re-
port 1895, August 1987.

10. Esker, L. Software Reuse Profile Study of Re-
cent FORTRAN Projects in the Flight Oynamics Area.
Computer Sclences Corporation, IM-88/083(S9 253),
January 1989.- - -

11. Firesmith, D. Mixing apples and oranges: Or
what -§s an Ada line of code anyway? Ada Letters,
Septeaber/October 1988.

12. Godfrey, S., and Brophy, C.

Study. Software
SEL-87-004, July 1987,

13. Heller, G.
the Rehosted SEL_Database. Software Engineering
taboratory, SEL-87-008, October 1987. .

14. MHcGarry, F., and Nelson, R. An Experiment
Hith Ada—The GRO Dynamics Simulator. KASA/GSFC,
April 1985,

15. McGarry, F., Page, G., et al. Recommended
(. Softwvare Engi-
neering Laboratory, SEL-81-205, April 1983.

16. Murphy, R., and Stark, N. Ada Training £vRl-
A . Software Engineering
Laboratory, SEL-85-002, October 198S.

17. Quisby, K., and Esker, L. Evolution of Ada
Phase Anmalysis. Software Engineering Laboratory,
SEL-88-003, 1988.

18." Reifer, O.
assessment.

.

Engineering Laboratory,

Ada‘s fismpact:

« December 1987. -

19. Seldevitz, E., and Stark, . Genera] Ohject-
Qriented Software Development. Software Engineers
ing ubor’tory. SEL-86-002, August 1986.

20. Solomon, 0., and Agresti, K.

{Preliminary). Computer Sclences
CSC/TH-87/6062, 1987, :

A quantftative

Profile of
Corporation,

